www.core-jetfuel.eu

CORE-JetFuel Coordinating research and innovation in the field of sustainable alternative fuels for Aviation

Andreas Sizmann - BHL

This project has received funding from the European Union's Seventh Programme for research technological development and demonstration under grant agreement No 605716

GROUP

- Background and objectives
- Performance indicators
- Trade-offs in technology assessment
- Roadmaps for R&D and deployment
- Conclusions and recommendations

- Background and objectives
- Performance indicators
- Trade-offs in technology assessment
- Roadmaps for R&D and deployment
- Conclusions and recommendations

The CORE-JetFuel Approach

Objectives of Research Analysis

- Technology assessment: identification of promising "clusters"
 - State of the art and potentials w.r.t.
 - environmental,
 - economic and
 - technical

performance parameters

- Portfolio assessment: mapping of R&D landscape
 - Impact and balance of R&D portfolio at European level

- Background and objectives
- Performance indicators
- Trade-offs in technology assessment
- Roadmaps for R&D and deployment
- Conclusions and recommendations

Comparison of options: Technology assessment

- Relevant questions
 - How much can we make?
 - What is the potential environmental impact?
 - How much would it cost?
 - Drop-in capable or not?
 - What is the current state of development (maturity)?
- The assessment of alternative fuel technologies requires a multiple-criteria approach

Multiple-criteria assessment framework

• Criteria selection and definition of metrics (performance indicators)

Criterion	Metric	
Technical maturity	Technology Readiness Level	TRL (1-9)
Feedstock production maturity	Feedstock Readiness Level	FSRL (1-9)
Conversion technology maturity	Conversion Technology Readiness Level	CTRL (1-9)
Technical compatibility	Maximum blending ratio	r _{Blend,Max} [%]
Economic competitiveness	WtT production costs relative to spot price in 2013	γ [%]
Global substitution potential	Production potential relative to demand in 2050	σ [%]
European substitution potential	Production potential relative to demand in 2050	σ [%]
Specific GHG emissions reduction	Specific lifecycle GHG emissions relative to conventional jet	E [%]

- Background and objectives
- Performance indicators
- Trade-offs in technology assessment
- Roadmaps for R&D and deployment
- Conclusions and recommendations

Potential global impact

Potential impact on GHG emissions reduction given by specific LC carbon balance and production potential

DRE-JetFuel

Potential European impact

RE-JetFuel

Potential global impact

Broad range of published values Many pathways show favorable LC carbon balance No pathway cost-competitive 10% Jet A-1 0% Relative difference in -10% GHG emission (arepsilon-20% -30% -40% -50% ~780% HDCJ/LC HTL/µA -60% HEFA/µA -70% HEFA/Cam ~600% BtL/LC StL/STC -80% HEFA/UCO -90% AtJ/LC PtL -100% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200% 220% ~250% ~360% -20% 0%

Relative difference in production cost (γ)

- Background and objectives
- Performance indicators
- Trade-offs in technology assessment
- Roadmaps for R&D and deployment
- Conclusions and recommendations

R&D Roadmap

Roadmap for Approval and Deployment

CORE-JetFuel

Policies and Regulatory Frameworks

- Background and objectives
- Performance indicators
- Trade-offs in technology assessment
- Roadmaps for R&D and deployment
- Conclusions and recommendations

Conclusions and recommendations

- Key performance indicator: European/global GHG emissions reduction potential
 - Specific GHG balance AND production potential
- Balance development risks with rewarding GHG emissions reduction potentials
 - Sustainability and scalability are crucial
 - Processes based on lignocellulosics and renewable nonbiogenic pathways promising
- Technical approval: Improve understanding of fuel properties
- Regulatory framework and/or incentives required to enable economic competitiveness of renewable jet fuel
 - Aviation-specific quantitative targets and strategies needed
 - Reliable knowledge of sustainable production potentials needed

A. Sizmann, A. Roth, C. Jeßberger

Bauhaus Luftfahrt e. V. Willy-Messerschmitt-Strasse 1 82024 Taufkirchen GERMANY

Web:www.bauhaus-luftfahrt.netE-mail:andreas.sizmann@bauhaus-luftfahrt.netarne.roth@bauhaus-luftfahrt.net

